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The development of Gortler vortices in boundary layers over curved walls in the 
nonlinear regime is investigated. The growth of the boundary layer makes a parallel- 
flow analysis impossible except in the high-wavenumber regime so in general the 
instability equations must be integrated numerically. Here the spanwise dependence 
of the basic flow is described using a Fourier series expansion whilst the normal and 
streamwise variations are taken into account using finite differences. The calculations 
suggest that a given disturbance imposed a t  some position along the wall will 
eventually reach a local equilibrium state essentially independent of the initial 
conditions. In  fact the equilibrium state reached is qualitatively similar to the large- 
amplitude high-wavenumber solution described asymptotically by Hall (1982 b ) .  I n  
general it is found that the nonlinear interactions are dominated by a ‘mean field’ 
type of interaction between the mean flow and the fundamental. Thus, even though 
higher harmonics of the fundamental are necessarily generated, most of the 
disturbance energy is confined to the mean flow correction and the fundamental. A 
major result of our calculations is the finding that the downstream velocity field 
develops a strongly inflexional character as the flow moves downstream ; the latter 
result suggests that the major effect of Gortler vortices on boundary layers of 
practical importance might be to  make them highly receptive to rapidly growing 
Rayleigh modes of instability. 

1. Introduction 
Our concern is with the effect of nonlinearity on the growth of Taylor-Gortler 

vortices in developing boundary layers. The presence of such vortices in many flows 
of practical importance such as those that occur over turbine blades or over laminar- 
flow aerofoils has recently stimulated much research aimed a t  understanding their 
structure in the linear regime. However, the corresponding nonlinear problem has 
received little attention because of the difficulty in taking care of non-parallel 
effects. 

Some discussion of nonlinear effects was given by Aihara (1976) who derived a 
nonlinear differential equation to determine the evolution of Gortler vortices. 
Aihara’s calculation ignored non-parallel effects and made other approximations 
that cannot be formally justified. At high wavenumbers an asymptotic description 
of the onset of nonlinearity in the Gortler problem was given by Hall (1982b) who 
found that nonlinear effects have a stabilizing influence. Moreover it was shown by 
Hall that non-parallel effects are crucial in the nonlinear regime. Thus the initial 
nonlinear development of Gortler vortices is described by a pair of coupled partial 
differential evolution equations rather than an ordinary differential amplitude 
equation as is usually the case. In  the linear regime it is only in the high wavenumber 
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limit that non-parallel effects can be accounted for in a ‘quasi-parallel’ manner, so 
it would appear that  non-parallel effects are important at all wavenumbers in the 
nonlinear problem. Before discussing the nonlinear problem further i t  is perhaps 
worth while for us to review briefly aspects of the linear problem relevant to the 
present calculation. 

I n  previous investigations Hall (1982a, 1983, hereinafter referred to as I, I1 
respectively) discussed the linear Gortler problem. In the first of these papers the 
wavenumber was taken to be large whilst in the second i t  was O( 1). The calculation 
of Hall (1982 6 ,  hereinafter referred to as 111) extended I into the nonlinear regime ; 
here we shall make a similar extension to 11. 

In  I, I1 it was shown that parallel-flow calculations for the Gortler problem are not 
valid except a t  high wavenumbers because the streamwise and normal dependences 
of the vortices cannot be separated. I n  fact, in the only regime where the instability 
equations can be reduced to ordinary differential equations, the asymptotic theory 
of I provides trivially a neutral curve or growth rate a t  least as accurate as that 
produced by the parallel-flow theories. It is perhaps necessary at this stage for us to 
be more precise about what we mean by ‘parallel ’ and ‘non-parallel ’ theories in the 
context of the Gortler problem. The linear partial differential equations governing 
the growth of Gortler vortices over a wall of small curvature are given by, for 
example, Floryan & Saric (1979) or in a much more general context by Gregory, 
Stuart & Walker (1955). The Gortler number for the flow is held fixed whilst the 
Reynolds number RE --f 03, and the terms neglected in the derivation of these 
equations are formally O(R&. We refer to  these equations as the non-parallel 
equations for linear Gortler vortices and refer to a ‘parallel flow’ calculation 
associated with these equations as being one that neglects some of the terms in these 
equations without further asymptotic justification. The calculation of I1 was based 
on the full equations whereas I used a high-wavenumber approximation to solve the 
non-parallel equations by a sequence of self-consistent asymptotic approximations. 
The calculation of Floryan & Saric (1979) a t  order-one wavenumbers is a parallel- 
flow approximation because streamwise derivatives acting on disturbance velocities 
are replaced by constants. Previous parallel-flow theories were given by Gortler 
(1940), (later corrected numerically by Hammerlin 1956), who retained only the 
terms that would be present in the corresponding Taylor-Couette flow calculation, 
and Smith (1955), who retained many terms associated with the growth of the 
boundary layer. Other truncations of the instability equations have been solved and 
the reader is referred to  the paper by Herbert (1976) for a detailed review of these 
calculations. 

At O( 1) wavenumbers the various parallel-flow theories give quite different results 
and in the most extreme cases predict instability at zero Gortler number or zero 
wavenumber. I n  I1 it was argued that a t  0(1) wavenumbers these calculations are 
necessarily incorrect because their neglect of streamwise derivatives of the 
disturbance velocity field gives the wrong structure for the disturbance a t  the edge 
of the boundary layer. If these terms are retained it was shown that the vortices 
decay to zero a t  the edge of the boundary layer a t  a rate independent of the vortex 
wavenumber. In  fact the linear instability equations are parabolic in the streamwise 
direction and can therefore be solved numerically by marching downstream from 
some initial location. A ‘local’ neutral position can then be defined to be the point 
where some disturbance flow quantity has a zero rate of change along the wall. This 
position depends on the location and form of the initial disturbance so that the 
notion of a unique neutral curve is not tenable for thc Gortler problems. However, 
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a t  high wavenumbers the numerical calculations of I1 converged to  the unique 
asymptotic result of I. 

Here we shall extend the parallel-flow calculations of I1 to the nonlinear regime 
appropriate to disturbances with wavenumber of O( 1). At higher wavenumbers the 
asymptotic high-wavenumber theory of I11 showed that the nonlinear problem is 
dominated by a ‘mean field’ type of interaction rather than one typical of a 
Stuart-Watson approach. It was shown that the mean flow correction driven by a 
finite-amplitude vortex ultimately becomes larger than the vortices driving it. At 
sufficiently large amplitude the mean flow correction described in I11 would cause the 
basic state to develop an inflexion point and might therefore make the bounday layer 
susceptible to rapidly growing Rayleigh instabilities. A primary aim of the 
calculation presented here is to investigate this possibility a t  O( 1) wavenumbers. Our 
calculations will also enable linear instability calculations of finite-amplitude Gortler 
vortices to be ultimately carried out along the lines of the recent calculation of 
Bennett & Hall (1988). The latter authors were concerned with the corresponding 
internal fully developed flow between concentric cylinders and showed that even 
small-amplitude vortices cause a significant destabilization of the undisturbed flow 
to Tollmien-Schlichting waves. 

There is no rational way to reduce the nonlinear non-parallel Gortler problem to 
a series of ordinary differential equations using the Stuart-Watson method. Hence 
we shall solve the equations governing finite-amplitude vortices using a numerical 
method based on the finite-difference formulation of I1 together with a Fourier 
decomposition in the spanwise direction. The vortices are assumed to be steady and 
the equations governing their development are marched downstream from the initial 
location where the disturbance is imposed. This is done using the implicit scheme of 
11, together with an iteration procedure to take care of the nonlinear terms which are 
now present in the calculation. At each downstream location the energy in each 
Fourier mode can be calculated in order to monitor the development of the 
instability. We shall see that nonlinear effects prevent the exponential growth of the 
disturbances predicted by linear theory. Thus, in the limited number of cases we 
have investigated, we find that nonlinear effects are stabilizing. We shall also see that 
any given vortex will, sufficiently far downstream, develop a structure consistent 
with the nonlinear theory of 111. The latter result is to be expected since the effective 
vortex wavenumber increases in the streamwise direction until the asymptotic 
theory of I11 applies. 

Apart from the arbitrariness associated with the linear problem described in I1 the 
nonlinear problem introduces further complications because of the further freedom 
we have when imposing the initial disturbance. Our calculations are, of course, 
restricted to a finite number of situations but nevertheless the similarity between the 
results enables us to make some tentative conclusions about the role of nonlinear 
effects in the Gortler problem. The procedure adopted in the rest of the paper is as 
follows: in $ 2  we formulate the nonlinear instability equations and describe a 
numerical scheme which can be used to integrate them. In 93 we describe the results 
we have obtained and use them to draw some conclusions about nonlinear Gortler 
vortices. 

2. Formulation of the instability equations and their solution 
Consider the flow of a viscous fluid of kinematic viscosity v over a wall of curvature 

u - ~ K ( x / Z ) .  Here 1 and a are typical lengthscales associated with the downstream 
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development of the flow and the local radius of curvature of the wall. We take a to 
be a typical flow speed and define a Reynolds number Re by 

01 
Re = -, 

V 

and consider the limit of Re -+ co with the Gortler number G, defined by 

21 1 
G = -Re%, 

a 

held fixed. Let us take ( X ,  Y , Z )  to be dimensionless variables in the streamwise, 
normal and spanwise directions scaled on 1, Re-%, Re-il respectively. The velocity 
field is taken to be of the form 

u = O ( a ( X ,  Y ) +  U ( X ,  Y , Z ) ,  Re-i(@(X, Y )  + V ( X ,  Y ,  Z ) ) ,  R e d W ( X ,  Y ,  Z ) ) ,  (2.3) 

where (a(X, Y ) ,  v ( X ,  Y ) )  corresponds to a Blasius boundary layer and ( U ,  V ,  W )  and 
the corresponding pressure perturbation P are functions of X ,  Y ,  2. Following the 
procedure outlined in I11 it is an easy matter to show from the Navier-Stokes 
equations that, correct to order Re-:, U ,  8, W ,  P satisfy 

u,+v,+w,=o, ( 2 . 4 ~ )  

U y y + U z z - V ~ y  = UU~+UGX+UUY+Q, ,  (2.4b) 

V,, + V,, - G K ~ U  - Py = aVX + Uvx + vVy + Vv, + Q 2 ,  ( 2 . 4 ~ )  

Wyy+ W,,-P, = ~ W x + v W y + & , ,  (2.4d) 

(2.5a) 

(2.5b) 

(2.5 c) 

If the nonlinear functions Q1, Q 2 ,  Q3 are set equal to zero in the above equations we 
recover the equations of 11. The nonlinear theory of 111 gives an asymptotic solution 
of (2.4) valid in the limit of a/az 9 1. This limit is physically relevant because it 
corresponds to the large-X state of any initial disturbance imposed on the flow. Thus 
in our numerical calculations we expect to recover qualitatively the results of I11 
sufficiently far downstream from where the initial disturbance is introduced. 

In order to reduce (2.4) to a form more suitable for computation we can eliminate 
P and W from the linear terms in (2.4 b ,  c, d )  t o  give 

KGG- U { a24 az2 i az2 az2 a2 I axyy +-- v, 

7 i a 2  { ay2 a 2 2  

a 2  a 4  - v + VX u,, + axxy - vx __- 

+ ayy-a--a-- v*+2 

+ V y y y y - v v y y y - { v y - 2 ~ }  v y y + ~ a x y - v ~ }  V, 

= -Qixy+Q2zz-Q3Yz, (2.6) 
where Q1, Q2 and Q3 are given by (2.5a, b,  c) respectively. 
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00 
We now write 

U = U,+ C U,(X, Y )  cosnaZ, 
12-1 

00 

V = V,+ E Vn(X ,  Y )  cosnaZ, 
n-1 

m 

W = C W n ( X ,  Y )  sinnaZ, 
n=l  

(2.7a) 

(2.7 b )  

( 2 . 7 ~ )  

where we have anticipated the well-known result that the nonlinear interactions that 
occur in the Taylor-Gortler problem do not generate a mean flow in the spanwise 
direction. We further note that in (2.7) we have chosen, without any loss of 
generality, the origin of Z such that U ,  V are even in Z whilst W is odd in Z. We then 
substitute for (U,V, W) from (2.7) into (2.4a) and (2.6) and equate like Fourier 
coefficients. This procedure shows that the mean flow correction satisfies 

u,,,-vO',,-uu,,-u,ux-~u,, = U , U O X +  v,u,,+F,, (2.8) 

where 
1 " O  

F, = - C {VmUmy-Um Vmy-2maUm W,}, 
2 m = l  

and V, is determined by avo avo - 
ax ay 
-+- - 0. 

For computational purposes we must of course truncate the infinite sums in (2.7) a t  
some suitably large value for the upper limit. We therefore replace the upper limit 
in (2.7) by N .  

We then find that U ,  satisfies 

UnYY -naa2Un -6U,, - U ,  GX - Vn6, - fUnY 
N-1 

= F, = C VnPm Urn, - Un-m V,, + mawn-, Urn -mmaU,-, W, 
m = l  
N C 1  

N-n 

+ 2 

+ C Vm-nUm,-Um-n Vrny-maWm-, Um-maUm-, W,, (2.10) 

Vn+m brmY-Un+m VrnY-maUm Wn+m-maUn+m Wm 
m = l  
n + N  

N 

m = n + l  
n + N  

w h e r e i = i i + U ,  andZ=fl+Vo. 
An equation of the same form can be derived from (2.6) by equating the coefficients 

of cosnax. Suppose that U,, V,, U,, V,, W,, for n = 1 , 2 , 3 , .  . . are known a t  X ,  we now 
describe how (2.8) and (2.10) can be stepped forward to X + s .  The scheme used is 
essentially that described in I1 together with an iteration procedure to take care of 
the nonlinear terms now present. Thus for example the mean flow equation (2.8) is 
discretized using finite differences in the X -  and Y-directions to give 
u;+lm+l-2Unm+l+ U;-lm+l -@nm { ,;+I m - yon-1 m }  0 

h2 8 2h 
{u; m + l -  u; m i  - p m  

nm -nm - nm -nm - ';"'(U,nk+l - u t k )  + V;k+l {U0n+lk+l - ut-lk+ll + F;k+l ,  

2h 
-u, ux v, u, - 

6 
(2.11) 
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Here indices m, n refer to the grid point X = X ,  +me, Y = nh. The nonlinear terms on 
the right-hand side of (2.11) are initially evaluated with k = m- 1 and the resulting 
tridiagonal system can be solved to  give C7, a t  X = X ,  + (m + 1)  e .  The equation 
(2.10) can be stepped forward in a similar manner to give U,,m = 1 ,  . . . ,  N a t  
X = X ,  + (m+ 1) e. Likewise the V-equation can be stepped forward by solving a 
pentadiagonal system. At this stage the nonlinear terms can be expressed in terms 
of the velocity field now calculated at X = X,+ (m+ 1) 6 .  The equation can then be 
solved again for the flow quantities a t  X = X ,  + (m + 1) E and the iteration procedure 
continued until the change in Utrn+l,  U:,+l, etc. is sufficiently small. Thus (2.11) and 
the corresponding equations for Urn, V, are effectively solved with k = m by iterating 
on the nonlinear terms on the right-hand side. 

3. Results and discussion 
We shall first describe some results obtained in order to verify the numerical scheme 
used. These calculations were carried out a t  various values of the parameters of the 
problem but here we shall concentrate on the case 

a = 0.2, G = 0.0288, K ( X )  = -. (3.1) 
X 
20 

This choice for the curvature function K means that the effective local Gortler 
number varies like X i  whilst the local wavenumber varies like Xi. The asymptotic 
theory of I showed that the neutral curve which can be uniquely defined at high 
wavenumbers has the Gortler number proportional to the fourth power of the 
wavenumber. This means, on the basis of linear theory, that  a vortex of any 
wavenumber becomes increasingly unstable when X increases. 

The basic state for the configuration (3.1) was disturbed at X = 55 by imposing the 
condition 

where 7 = y/(2z)i and integrating the linearized equations to X = 100. At this stage 
the disturbance is almost locally neutral stable according to the criterion of I1 and 
the linear velocity field, i.e. the fundamental (n  = 1)  mode of (2.7), was given an 
amplitude A equal to the maximum X-disturbance velocity component. The 
nonlinear equations were then integrated for X > 100 and the local growth rates and 
energies of the different harmonics were calculated. We defined the energy of the nth 
harmonic to be 

~ , ( y j  = 76 e-T2, ~ ~ ( 7 )  = o (3.2) 

En = {Ui((X,  Y )  + V i ( X ,  Y )  + W i ( X ,  Y ) }  dY, n = 1 , 2 , .  . . (3.3) 

and the energy of the mean flow distortion was defined by 

E, = lom ( U i ( X ,  Y ) )  dY. (3.4) 

Here we have omitted the contribution from V, since V, --f V,(X) when Y + 00. The 
growth rate e,(X)  of the nth mode was defined by 

so that for a parallel boundary layer in the linear regime On would be twice the linear 
spatial amplification rate. 
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Linear theory 

50 100 150 200 250 
X 

FIGURE 1 .  The growth rate 8, for the wall K = X / 2 0 ,  for A = 0.05, 0.1, 0.15, 0.2, and G = 0.0288, 
a = 0.2. 

100 150 200 2io 

FIGURE 2. The growth rate 8, for the wall K = X / 2 0 ,  for A = 0.05, 0.1, 0.15, 0.2, and G = 0.0288, 
a = 0.2. 

We know from the non-parallel calculations of I that 6, (X)  initially depends 
sensitively on the form and location of the initial disturbance. Here the situation is 
more complex because we can specify each Fourier mode and the mean flow 
distribution. In  figure 1 we have shown the dependence of 6, on X for five different 
values of A ,  the disturbance flow amplitude. Apart from the fundamental all the 
Fourier components of the disturbance were set equal to zero at  X = 100. The 
calculations shown were carried out with N = 4, e = 0.025, ym = 150. Similar 



250 P. Hall 

- I 

150 200 250 
X 

100 1 
i 
I az =~ 4 

50!  I 0' 

la:=2= 
0.2 0.4 0.6 0.8 

UT 

FIGURE 3(a ,  b ) .  For caption see page 253. 
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FIGURE 3(c ,  d ) .  For caption see page 253. 
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FIGURE 3 ( e ,  f ) .  For caption see facing page. 
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FIGURE 3. (a )  The energy distributions E, and El for A = 0.1, 0.2. ( b )  The total streamwise velocity 
component a t  different spanwise locations for X = 300, A = 0.1. ( c )  The total streamwise velocity 
component a t  different spanwise locations for X = 300, A = 0.2. ( d )  The X velocity components a t  
X = 300, for A = 0.2. ( e )  The Y velocity components a t  X = 300 for A = 0.2. ( f )  The 2 velocity 
components at X = 300 for A = 0.2. (9) The mean flow correction at X = 300 for A = 0.2, all for 
K = X / 2 0 ,  G = 0.0288, a = 0.2. 

FIGURE 4. The growth rates for the cases (i), (ii) respectively in the linear regime. 

9-2 
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100 200 
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FIGURE 5 (a ,  b ) .  For caption see facing page. 
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200 
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1 0 7 ~ ~  

1 .O 

0.5 

FIGURE 5 .  The energy function for case ( i )  with A = 0.1, 0.15, G = 0.1, a = 0 
(c) E , ;  (4 E,. 
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FIGURE 6 ( a ,  b ) .  For caption see facing page. 



Development of Gortler vortices in growing boundary layers 257 
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X 

FIGURE 6. The energy function for case (ii) with d = 0.05, 0.1, 0.15, 0.2. G = 0.23, a = 0.2. 
(a )  E, ;  ( b )  El ; ( c )  E,. 

calculations were carried out by changing N to 8, E to 0.05 and ym to 100 in turn. The 
results agreed with those of figure 1 to the graphical accuracy of that figure. 

We see in figure 1 that for a 0.5% disturbance the growth rate over the interval 
shown is indistinguishable from linear theory, At higher values of A the growth rate 
is initially increased above the linear value and then falls below it when X increases. 
The amount by which the growth rate is decreased from the linear value increases 
with A and we conclude that in this sense nonlinear effects are stabilizing. We 
attribute the initial increase in the growth rate to the relatively rapid change in flow 
structure that must necessarily occur when nonlinear effects first become operational. 

In  figure 2 we have shown the corresponding growth rates for the first harmonic ; 
again we see that after the initial period of decay the disturbance grows when X 
increases. We note that the growth rates of figures 1 and 2 are comparable even 
though the first harmonic is locally neutrally stable a t  a higher Gortler number than 
is the fundamental. The growth of the first harmonic is of course driven by nonlinear 
effects. Though the calculations represented in figure 2 clearly indicate the stabilizing 
effect of nonlinearity, they do not indicate the emergence of any local equilibrium 
state as the vortices develop downstream. 

In figure 3 ( a )  we have shown the energy functions E,  and El corresponding to 
A = 0 . 1 , O . Z  together with a = 0.2, G = 0.0288 and K ( X )  = X / 2 0 .  We see that the 
differences between the values of E, and E ,  for A = 0.1 and A = 0.2 decrease with X. 
This is presumably because when X is large the effective wavenumber is also large, 
and the analysis of 111 suggests that in this regime there exists a unique finite- 
amplitude solution independent of its initial upstream form. However the calculation 
of IT1 cannot be applied directly to the calculations reported here since they are 
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FIGURE 7 ( a ,  b ) .  For caption see page 261. 
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FIGURE 7(c,  d ) .  For caption see page 261. 
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FIGURE 7(c,  d ) .  For caption see page 261 
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FIGURE 7 ( e ,  f ) .  For caption see facing page. 
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FIGURE 7 .  (a-d)  The X velocity component U ,  for case (ii) with G = 0.23, a = 0.2. (a )  A = 0.05; 
(b)  0.10; (c) 0.15; (d) 0.20. (e-h) The X velocity component U ,  for case (ii) with G = 0.23, a = 0.2. 
( e )  A = 0.05; ( f )  0.10; (9 )  0.15; (h)  0.20. 
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restricted to an asymptotically small interval near to the neutral location. 
Nevertheless the short wavelength nonlinear theory of I11 does suggest that in this 
regime the origin of the disturbance is unimportant. 

In  figure 3 (b ,  c) we have shown the total downstream velocity component uT a t  the 
spanwise locations az = $T, 7t, 27c together with the Blasius profile which exists in the 
absence of the vortices. We note that the values of uT corresponding to ax = tx are 
identical to those with ax = 3x. The profiles shown correspond to X = 300 and we see 
that a t  this location there is very little difference between the profiles originating 
from A = 0.1 and A = 0.2. Of particular interest is t3he fact that  the ax = x case has 
a strongly inflexional profile which, if a parallel-flow stability analysis is applied, is 
unstable to highly amplified Rayleigh instabilities. The location az = x corresponds 
to the boundary between vortices where the motion of the fluid is away from the wall. 
We might therefore expect that such locations will be the most susceptible to  the 
secondary instabilities that cause the onset of time dependence in the Gortler 
problem. 

In figure 3 (d-g) we have shown the individual velocity components appropriate to 
the above situation with A = 0.2. It can be seen that the disturbance is dominated 
by the fundamental and mean-flow-correction velocity components. We see that, a t  
X = 300, U ,  has a significantly different shape than the linear solution initially 
imposed on the flow a t  X = 100. We have no physical explanation of the nonlinear 
mechanism that produces this distortion. Before commenting on the experimental 
relevance of our results we discuss some other calculations performed on walls of 
different shapes. 

Further calculations were carried out for the same initial condition (3.2) but with 
different curvature distributions K(X) .  The curvature distributions that we examined 
in detail and the values of a and G used in the calculations were 

(ii) 

a = 0.16, G = 0.1, 
1 

1+(0.02X-2.4)' 
K ( X )  = 

Xt  
K ( X )  = -, a = 0.2, G = 0.23 

10 

The first curvature distribution was chosen because it corresponds to a flow over a 
hump such that the flow is unstable only over a finite interval. The second 
distribution was chosen since, as in the asymptotic theory of I, it gives a local Gortler 
number proportional to the fourth power of the local wavenumber. At relatively large 
values of X the local growth rate changes little with X and in the nonlinear regime 
we might expect to recover results qualitatively similar to those of 111. The linear 
growth rate curves corresponding to (i) and (ii) and the initial conditions (3.1) are 
shown in figure 4. 

In figure 5 we have shown the energy functions appropriate to the curvature 
distribution (i). The linear eigenfunction was obtained by inserting (3.2) a t  X = 55 
and integrating until X = 85, where the nonlinear terms were turned on. The initial 
disturbance amplitudes were taken to be d = 0.1 and A = 0.15. We see that the 
energy of the disturbance is again almost completely confined to the fundamental 
and mean flow correction. The maximum value of the disturbance energies El ,  E,, E,  
occur close to the position where the linear growth rate (i) of figure 4 is zero. In  
contrast the maximum of E ,  occurs at a higher value of X. This suggests that  the' 
results of figure 5 are dominated by the interaction between the basic Blasius 
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boundary layer and the fundamental component of the disturbance, and never reach 
any ‘local ’ nonlinear equilibrium state. 

In figure 6 the results corresponding to the case (ii) are shown. The nonlinear terms 
were again turned on at  X = 85 after integrating (3.2) from X = 55, and four 
calculations corresponding to  A = 0.05,O. 1,0.15,0.20 were carried out. Figure 6 (a-c) 
shows the evolutions with X of the energy function E,, E ,  and E ,  for this situation. 
The functions E, and E ,  appear to approach limiting forms essentially independent 
of A whilst E ,  initially increases before decaying a t  sufficiently large values of X .  This 
suggests that as the vortices develop into a region where the effective Giirtler number 
(TIz and the effective wavenumber a, satisfy G, - a;, a, 9 1 the asymptotic structure 
found in I11 is qualitatively recovered. In  the latter calculation it was found that 
small-wavelength Gortler vortices develop through a ‘ mean-field ’ interaction 
between the fundamental and mean flow correction. A quantitative comparison 
between our results and I11 is not possible since the asymptotics of 111 was restricted 
to an O(a-l)  neighbourhood of the neutral value of X .  

In  figure 7 we have shown how U ,  and U ,  vary with X in the above calculations 
with A = 0.05, 0.1, 0.15, 0.2. We see that U ,  in each case for large enough X takes 
on the characteristic shape found in the calculations for K - X .  Likewise the mean 
flow correction always evolves into the characteristic shape shown in figure 3 (9)  for 
the latter case. We note that the rate a t  which these shapes are set up increases with 
the size of the initial perturbations and that the shapes are qualitatively similar to 
those found in 111. Again the fact that the asymptotic solution is valid only very 
close to the neutral point means that a detailed comparison with I11 is not possible. 
The differences between the total downstream velocity component and Blasius flows 
a t  different values of X ,  2 for different values of A are shown in figure 8. We can again 
see the development of a highly inflexional profile a t  az = 7[: which is certainly locally 
unstable to rapidly growing Rayleigh modes of the type discussed by, for example, 
Tutty & Cowley (1986). Such a calculation would be formally justified if the 
wavelength of the Rayleigh instability was small compared to the vortex wavelength. 
The Rayleigh mode would then be ‘trapped’ a t  the spanwise locations where the flow 
is most unstable on the basis of inviscid theory. 

We believe that the major result of our calculations is the demonstration that the 
nonlinear evolution of streamwise vortices produces inflexional profiles which will 
presumably break down via a secondary Rayleigh instability. The experiments of, 
for example, Aihara & Koyama (1981) are consistent with this conclusion and 
downstream velocity profiles qualitatively similar to ours are presented in this paper. 
The spanwise locations where the profile is most inflexional in both the experiments 
and our calculations is at the vortex boundaries where the flow is away from the wall. 
We note that the shear stress a t  the wall a t  these positions is a minimum. 
Blackwelder (1983) has discussed the possible relationship between the breakdown 
process of Gortler vortices and the role of streamwise vortices in transition on a flat 
plate. In  the absence of curvature the streamwise vortices could be generated by the 
interaction of three-dimensional Tollmien-Schlichting waves. Thus it is possible that 
the streamwise development of local inflexion points which we have observed in our 
calculations might be relevant to transition in the absence of curvature. 

A detailed comparison of our results with experimental observations is not possible 
since a significant result of the present calculations is that  the nature of the initial 
disturbance effects the downstream evolution of the vortices. We have found that a t  
higher wavenumbers these differences are not so pronounced ; unfortunately no 
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FIGURE 8 ( a ,  b) .  For caption see facing page 
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FIGURE 8. (a) The total streamwise velocity component for case (ii) with X = 125, 165, 205, 245. 
G = 0.23, a = 0.2 and (a) d = 0;  ( b )  A = 0.05, az =in; (c) d = 0.05, az = n ;  ( d )  d = 0.05, az = 271. 
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experimentally determined profiles have been measured in such a configuration. 
Thus the most we can say is that our results are qualitatively similar to the few 
experimentally determined profiles that have been published. 

This work was carried out whilst the author was a t  ICASE, NASA Langley. 
Supported by NSAI-17070. 
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